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• Traditional diagnosis of skin cancer
▪ Done in person by a physician
▪ Rely on guidelines about the appearance of a mole 
▪ Expensive and inaccessible to some
▪ To non-dermatologists, difficult to distinguish benign tumors and 

melonomas visually
• Classification using machine learning algorithm 
▪ Based on a jpeg image of the lesion
▪ Enable diagnosis accessible to anyone with a smartphone 
▪ Supplement a doctor’s diagnosis
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• Resource
▪ Skin Lesion Analysis toward Melanoma Detection: A Challenge at 

the International Symposium on Biomedical Imaging 2016 [1]

▪ Hosted by the International Skin Imaging Collaboration
▪ 3 Tasks

• Lesion segmentation
• Dermoscopic feature detection
• Disease classification (our project goal)
▪ Training data: 700 skin lesion images

• Original dermoscopic images
• Binary segmentation masks
• Ground truth

▪ Test data: other 200 skin lesion images 
• Original dermoscopic images 
• Binary segmentation masks

• Preparation
▪ Quantify the images: transfer images to quantitative matrices 

whose elements represent the corresponding pixels in the 
images

▪ Grayscale and mask out the background skin texture

• Features extraction

• Dimension reduction
▪ Total amount of features: 56 
▪ Use principle component analysis to reduce the dimensionality

▪ Use the first 25 PCs to retain 95% variance. 

• Models
▪ Support vector machine (SVM)
▪ Random forest
▪ Neural network (nnet): Node 1 and Node 1
▪ K-nearest neighbors (KNN)
▪ C5.0
▪ Linear discriminant analysis (LDA)
▪ Generalized boosted regression (GBM)

• Ensemble Model
▪ GBM Metalearner

• Problem: Imbalanced training dataset (556 benigns and 134 
melanomas)

• Possible solution: Balancing the training dataset
• Trials: Balancing lead to decrease in model accuracy

• Next step: Looking into new data balancing methods that work 
better with the given training data

• Highest average accuracy = 0.6563
• Models and thresholds
• Predictions
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